
Hand-Written Character Recognition Using Multi-Class
Support Vector Machine (SVM)

Pawan S. Sawant

MCEN 5125: Optimal Design

Prof. Shalom D. Ruben

May 7, 2024

1

Contents

1 Introduction 4

2 Background: Classification 5
2.1 Binary classification . 5
2.2 Multi-class Classification . 5
2.3 Support Vector Machine(SVM) . 5

3 Methodology: 6
3.1 Training the Model: . 6

3.1.1 Given Data: . 6
3.1.2 Preprossing the Training Data 6
3.1.3 Deriving the Cost Function and Formulating into Quadratic

Programming . 7
3.1.4 Feature Engineering and Parallel Computing 10
3.1.5 Displaying the classifiers . 10

3.2 Testing the model . 11
3.2.1 Given Testing Data . 11
3.2.2 Preprocessing the Testing Data 11
3.2.3 Results using Directed Acyclic Graph(DAG) and Hyperplanes 11

4 Results 13
4.1 Understanding Prediction errors . 13

4.1.1 Finding the Error Rates . 13
4.2 Finding the Error Rates . 13
4.3 Training Results . 14

4.3.1 Accuracy for different γ value 14
4.3.2 Confusion Matrix for Training Dataset 15
4.3.3 Error Predictions . 15

4.4 Testing Results . 16
4.4.1 Accuracy for different γ value 16
4.4.2 Confusion matrix for the testing set 17
4.4.3 Error Predictions . 18

5 Conclusion 19

6 References 20

2

List of Figures

1 Hyperplane Seperating two features 7
2 Two Hyperplane Seperated by a Margin 8
3 Classifier values(coefficients) that distinguish the digits 11
4 Simplified DAG method for digits from 0 to 3 12
5 Variation of positive rate with respect to γ 14
6 Variation of positive rate with respect to γ without feature engineering 17
7 Variation of positive rate with respect to γ with feature engineering . 17

List of Tables

1 Understanding the Confusion matrix. 13
2 Accuracy rates for different values of γ 14
3 Confusion matrix for the training set for γ = 1e5. 15
4 Accuracy rates for different values of γ without feature engineering . 16
5 Accuracy rates for different values of γ with feature engineering . . . 16
6 Confusion matrix for the Testing set with feature engineering. 18

3

1 Introduction

In the field of machine learning, identifying patterns and optimizing them is crucial,
especially in applications like analyzing handwritten documents and sorting mail au-
tomatically. One of the key tools for character recognition in these areas is the MNIST
dataset. MNIST stands for Modified National Institute of Standards and Technol-
ogy. It’s a comprehensive database that contains images of handwritten digits, rang-
ing from 0 to 9. This dataset is extensively used because it helps computers learn
how to recognize and interpret human handwriting. By using the MNIST dataset,
researchers and developers can train machine learning models to accurately identify
handwritten numbers. This capability is particularly useful in real-world applications
like reading postal codes on envelopes for mail sorting or digitizing written texts. The
MNIST dataset is highly valued in the tech community for its reliability and its role
in advancing machine learning technologies related to character recognition.
In this project, our primary goal is to develop a character recognition system for
handwritten digits using Support Vector Machines (SVM). SVM is a powerful ma-
chine learning method used for classification and regression. In character recognition,
SVM helps by distinguishing between different digits based on their features extracted
from images. The idea is to find the best dividing boundary (hyperplane) that sep-
arates digits into their respective categories with maximum margin. This method
effectively handles the complexities of handwriting variations and improves the accu-
racy of digit recognition. By using SVM, we aim to create a robust system capable
of accurately identifying handwritten numbers, enhancing the efficiency of processes
that rely on digit recognition.

4

2 Background: Classification

2.1 Binary classification

There are many problems in the real world that we need to classify or categorize
into different groups or classes depending on their features. Classification is a data
fitting with an outcome that takes on typically non-numerical values such as True or
False, Spam or Not-spam, Elephant or Giraffe. This output of classification is called
as labels or Categories. This type of classification is called binary classification or
Boolean classification. Due to the fact that classifiers are dependent on the numerical
data, we need to represent the outcomes(i.e. True or False, Elephant or Giraffe) in
terms of numerical values. In binary classification, this outcome is encoded as +1 for
one class and -1 for another class.

2.2 Multi-class Classification

When the given problem has more than 2 categories or labels, it comes under Multi-
class classification. In the least square multi-class classifiers, we create a least square
classifier for each label or category versus all other categories. To explain this more
intuitively, let us consider an example we are trying to predict an Apple, Banana
or Peach. Therefore, we will have to create a classifier of an apple versus a banana
or a peach, the second classifier would be a banana versus an apple or a peach and
similarly a classifier for a peach versus the rest. In this project, we will be using this
least square multi-class classification technique, where we will be finding a classifier
for each digit versus all other digits.

2.3 Support Vector Machine(SVM)

Support Vector Machine is a machine learning algorithm which is used for classifi-
cation and regression problems. An SVM divides data along a decision boundary
(plane) established by a limited subset of the data (feature vectors). The data subset
that supports the decision boundary is known as the support vector and the optimal
choice boundary is known as a hyperplane. In this algorithm we will be finding the
classifiers for each digit vs each digit like explained in the multi-class classification.

5

3 Methodology:

3.1 Training the Model:

3.1.1 Given Data:

The MNIST is a collection of handwritten digits from 0 to 9, each of size 28x28
pixels, these pixel values are populated in a single row of 784 columns. The data
comprises 60000 training Images which also have corresponding labels that help in
the development and comparison of the recognition models. Therefore, we will name
the known variable for training as X which is of the size 60000x784.

3.1.2 Preprossing the Training Data

• Trimming the data: In the given data set, each image contains zero-valued
pixels in the border of each image. These values do not provide essential infor-
mation for the classification of the digits, therefore these pixel values may cause
unnecessary noise and can increase the processing time. To solve this problem,
we will be preprocessing the data by eliminating the border pixel values. The
data trimming can be done for each 60000 number and the size of each number
will change to 26x26. Therefore, the known variable X will have dimension
60000x676.

• Data Normalization: The original pixel value in the given dataset is represented
by 8-bit unsigned integers, these values range from 0 to 255. To maintain
consistency in the data, we will be Normalizing the pixel values by scaling the
values that range between 0 and 1. Normalizing the data will ensure that all
the features are on a similar scale which in turn results in speeding the training
model.

• Sorting the training data: We need to sort the data based on the labels given
in ascending order(or descending order) so that we can form the systems of
equations easily. We can sort the given pixel data by merging the labels and
their corresponding image pixel data and then we can sort them in ascending
order based on the labels.

6

3.1.3 Deriving the Cost Function and Formulating into Quadratic Pro-
gramming

As explained in the 2.2: Multi-class Classification, we will be using classifiers to
differentiate between the digits. Instead of using 1 vs All, we will be generating 1
vs. 1 classifiers for each digit using a Directed Acyclic Graph(DAG) which we will
discuss in a later section. For the two digits , we can differentiate them using just
one hyperplane that can be simply defined by a equation. y = mx+ b.

y = mx+ b (1)

Figure 1: Hyperplane Seperating two features

Figure 1 shows a two-dimensional case, where a hyperplane (black dotted line)
separates the two features. In this way, we can generate hyperplanes for all the
classifiers.

In order to define a higher order, the equation of hyper plane will have vector,
and the equation will be given as follows:

aTx− b = 0

where, aT = [a1, a2, · · · , an]
x = [x1, x2, · · · , xn]

(2)

7

Since, we will be using SVM algorithm, which tries to find the hyperplanes that
not only seperates the two classes but also keeps a maximum margin m. This margin
is the distance from the hyperplanes to the data point of the class. To find the optimal
hyperplanes, let x1 and x2 be the two points on the boundries of the margin on the
opposite side of the hyperplanes. Therefore, the equation of the hyperplanes is given
below, also we Figure 2 shows two hyperplanes at a optimal margin.

aTx1 − b = 1 and aTx2 − b = −1 (3)

Figure 2: Two Hyperplane Seperated by a Margin

The margin m in between the two hyperplane is given as follows:

m =
2

||a||2
(4)

In practice, the best classifier may not be the one whose margin is set to a con-
stant value. The data-to-hyperplane distance criterion is either loosened or tightened
using a weighting function based on slack variables to account for the inherent unpre-
dictability in each binary classifier. The weighting function, denoted by the variable
gamma, is like a tuning knob on the margin; it’s what decides the values of the
hyperplane coefficients.

In practice, there wont be a best classifier whose margin is a constant value.
We can alter the distance between the data and the hyperplanes using a weighting
function denoted by γ. We can use this γ as a tuning knob to adjust the values of
the hyperplane coefficient A and b.

8

In this project, we will be iterating different values of γ to find the optimal solution.

γ = [0.00001, 0.001, 0.01, 1, 100, 1000, 10000, 100000]

Therefore the cost function can be given as follows

minimize aTa+ γ(1⊤u+ 1⊤v)

subject to aTx− b ≥ 1− u,

aTx− b ≤ −(1− v),

u ≥ 0,

v ≥ 0.

(5)

Now that we have have our cost function and subject to, we need to formulate this
in to quadratic programming form as required in MATLAB. According to MATLAB,
for quadratic programming the required form is as follows:

min
1

2
xTQx+ qTx

subject to Ax ≤ b
(6)

Therefore, the given form can be written as follows

Solution =


a
b
u
v


⊤

︸ ︷︷ ︸
x


I/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Q


a
b
u
v

+ γ
[
0 0 1 1

]︸ ︷︷ ︸
qT


a
b
u
v


⊤

(7)

The x vector has hyperplane coefficient A and b which we can use to test the
accuracy of the model.

9

3.1.4 Feature Engineering and Parallel Computing

In MATLAB, parallel computing is the technique for carrying out many calculations
at once by allocating tasks among several processors, cores, or computers. Programs
that need a lot of data handling or are computationally demanding may run much
more quickly using this method. Among many features provided by the Parallel Pro-
gramming Toolbox in MATLAB, we will be using parallel-for-loops(parfor) in this
project. This function will run the highly computationally required loops to be run
on multiple cores to get the results as fast as possible. We will discuss the time dif-
ference in solving the optimization problem in the results section.

In the relm of image recoginition, feature engineering is the procedure of choosing,
obtaining and modifying the features from the preprocessed picture data to improve
the machine learning model’s performance. In this project, we will be two types of
feature engineering on the images data. First will be trimming the edges of the by
significant amount so that only digits data can be used to train the model. This will
eliminate the bunch of zeros in the data and can potentially reduce the computation
time. Then we will be sharpening the images, in this method each pixel is assigned
a value of 0 or 1 based on a threshold value by the process of iteration. Using this
method, we will be able to eliminate less relevent information while keeping and
enhansing the key characteristics of the digit. To show the effect of image sharpining,
we can see the difference in the image quality in the Figure ??below. The comparison
of the results will be shown in the result section.

3.1.5 Displaying the classifiers

Now that we have hyperplanes for each digit with respect to each digits, we can
plot the values of each pixel that the model will be using to detect the digit. This
plot/image will represent the sensitivity map of each classifier to the pixel value of
the predicting digit. following images show the heat map of the classifiers. Since we
have 45 classifiers, we won’t be including all the images for each and every classifier.

10

(a) Classifier values for digit 0 vs. 4 (b) Classifier values for digit 2 vs. 9

Figure 3: Classifier values(coefficients) that distinguish the digits

3.2 Testing the model

3.2.1 Given Testing Data

Similar to the Training Dataset, the MNIST also has a collection of handwritten
digits from 0 to 9, each of size 28x28 pixels, these pixel values are populated in a
single row of 784 columns. The data also comprises 10000 Testing Images which also
have corresponding labels that will be used for the testing and verifying the accuracy
of the model. We will name the known variable for testing as X̂ which is of the size
10000x784.

3.2.2 Preprocessing the Testing Data

While training the model, we had done various preprocessing of the given data, Sim-
ilarly, we will be preprocessing the given training data. First, we will trim the given
28x28 pixel data into 26x26 pixel data. Then will be Normalizing the pixel values by
scaling the values that range between 0 and 1.

3.2.3 Results using Directed Acyclic Graph(DAG) and Hyperplanes

The classifier’s output can be determined using DAG. Since we have 10 digits, the
algorithm perform 10 comparision to find the resultant digit using process of elimina-
tion. A simple DAG can shown in the Figure 4. In this method,we builds a hierarchy
of classifiers in which each decision point distinguishes between two possible classes
rather than handling the issue at once. By use of successive binary tests, this ap-
proach effectively reduces the range of potential digit classifications, facilitating a
faster convergence to the right class. The DAG method is thus a sensible option for

11

digit recognition jobs since it reduces the total computing load and complexity when
compared to a direct multi-class classification.

Figure 4: Simplified DAG method for digits from 0 to 3

We will be using this method to find the predicted number(labels) and then we
can you this predicted labels to find the accuracy of the model.

12

4 Results

4.1 Understanding Prediction errors

[1] Let us we are given a set of data x1, x2,, xN and their corresponding predictions
are written as x̂1, x̂2,, x̂N . There are four possible outcomes of the predictions:

• True Positive : xN = +1 and x̂N = +1

• True Negative : xN = −1 and x̂N = −1

• False Positive : xN = −1 and x̂N = +1

• False Negative : xN = +1 and x̂N = −1

So, in the first two cases, the predicted error is correct, i.e. the model predicted
the digit correctly. Whereas in the last two cases, the prediction is incorrect, i.e. the
model did not predict the digit correctly. These predictions can be easily tabulated
into a matrix that is known as a confusion matrix.

Table 1: Understanding the Confusion matrix.

4.1.1 Finding the Error Rates

Prediction

Outcome x̂N = +1 x̂N = −1 Total

xN = +1 Ntp Nfn Np

xN = −1 Nfp Ntn Nn

All Ntp+Nfp Nfn+Ntn N

Where Ntp and Ntn are the true positive and true negative predictions respectively.
Whereas, Nfn and Nfp are false negative and false positive predictions respectively.
Therefore, the off-diagonal elements of the confusion matrix are the errors in the
predictions and the diagonal elements are the correct predictions.

4.2 Finding the Error Rates

[1] The performance of the model is expressed in terms of confusion matrix and error
rates. Various rates are given below:

• error rate = Nfp +Nfn/N

13

• true positive rate = Ntp/Np

• false positive rate = Nfp/Nn

4.3 Training Results

4.3.1 Accuracy for different γ value

We iterated various γ values to find the optimal solution, and we found out the the
best results we achieved in the training was with the maximum γ. Following table
shows the accuracy of the model in the training set data.

γ True Positive Rate (%)
0.00001 18.38
0.001 92.31
0.01 94.56
1 96.98
100 98.32
1000 98.41
10000 98.43
1e5 98.44

Table 2: Accuracy rates for different values of γ

The figure below shows the variation of the positive rate vs γ.

Figure 5: Variation of positive rate with respect to γ

14

4.3.2 Confusion Matrix for Training Dataset

We can easily plot the table of confusion matrix based on the results we got. In
training data set we got maximum accuracy at γ = 1e5 Therefore confusion matrix
for the optimal solution in training set in shown below.

Table 3: Confusion matrix for the training set for γ = 1e5.

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 5923 0 0 0 0 0 0 0 0 0 5923
1 0 6742 0 0 0 0 0 0 0 0 6742
2 0 0 5859 54 9 4 4 4 24 0 6742
3 0 0 46 5940 11 79 2 12 41 0 6131
4 0 0 0 0 5788 0 0 3 3 48 5842
5 0 0 0 95 3 5276 6 2 39 0 5421
6 0 0 0 0 0 0 5918 0 0 0 5918
7 0 0 0 0 0 0 0 6188 6 71 6265
8 0 0 20 58 8 83 15 7 5660 0 5851
9 0 0 0 0 59 2 0 110 6 5772 5949

All 5912 6785 5865 6052 5970 5567 5999 6327 5732 5791 60000

4.3.3 Error Predictions

From the predictions shown in the confusion matrix, we can easily find the error rates
in the training dataset.

• error rate = Nfp +Nfn/N .Therefore, the error rate is 1.56%

• true positive rate for digit 9 = Ntp/Np. Therefore, the true positive rate is
99.67%

• false positive rate for digit 0 = Nfp/Nn. Therefore, the false positive rate is
2.05%

15

4.4 Testing Results

4.4.1 Accuracy for different γ value

Similarly in like we did in training’s result, we iterated various γ values to find the
optimal solution in the testing data, and we found out the the best results we achieved
in the training was with the maximum γ. Following table shows the accuracy of the
model in the training set data.

γ True Positive Rate (%)
0.00001 18.78
0.001 92.44
0.01 94.13
1 92.10
100 87.73
1000 87.35
10000 87.13
1e5 87.17

Table 4: Accuracy rates for different values of γ without feature engineering

γ True Positive Rate (%)
0.00001 15.31
0.001 93.01
0.01 94.45
1 93.33
100 92.39
1000 92.31
10000 92.34
1e5 92.35

Table 5: Accuracy rates for different values of γ with feature engineering

The figure below shows the variation of the positive rate vs γ.

16

Figure 6: Variation of positive rate with respect to γ without feature engineering

Figure 7: Variation of positive rate with respect to γ with feature engineering

4.4.2 Confusion matrix for the testing set

Based on the hyperplanes we have found for each digit, we can find the resultant
predictions for the testing dataset. This resultant prediction can be populated into a
confusion matrix is shown below:

17

Table 6: Confusion matrix for the Testing set with feature engineering.

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 962 0 2 2 1 5 3 1 4 0 980
1 0 1118 1 4 0 2 2 1 7 0 1135
2 6 1 962 11 11 6 9 10 13 3 1032
3 0 1 10 943 1 21 0 13 18 3 1010
4 1 0 4 2 931 2 8 2 2 30 982
5 9 1 4 39 5 797 14 3 18 2 892
6 7 2 8 2 4 6 927 0 2 0 958
7 0 5 23 6 9 3 0 958 3 21 1028
8 4 4 4 19 6 27 10 4 894 2 974
9 4 4 1 6 26 9 0 24 10 925 1009

All 993 1136 1019 1034 994 878 973 1016 971 986 10000

4.4.3 Error Predictions

From the predictions shown in the confusion matrix, we can easily find the error rates
in the testing dataset.

• error rate = Nfp +Nfn/N .Therefore, the error rate is 5.83%

• true positive rate for digit 9 = Ntp/Np. Therefore, the true positive rate is
93.81%

• false positive rate for digit 9 = Nfp/Nn. Therefore, the false positive rate is
6.19%

18

5 Conclusion

In this project, we did a thorough analysis of hand-written character recognition
using Multi-Class Support Vector Machine (SVM) on the MNIST dataset. In this
project we iterated various values of γ and found accuracy for each value. It was
evident that if the γ is extremely less, the accuracy would drastically decrease, the
variation can be seen in the Figures 5 and 7. Although the feature engineering that
we implemented did not improve the accuracy by much, but using parallel computing
reduced the time required to run the training model drastically. Before using the
parallel computing, the time required to run the training model was about 6.5hrs for
the all the eight γ, but using the parallel computing(11 core, may change from device
to device) this time reduced to about 40 minutes. In conclusion,the model achieves
a high accuracy using the quadratic programming as compaired to the least squares
accuracy. In future improvements we could use various feature engineering techniques
such as kernal method to improve the accuracy by more percentage.

19

6 References

[1] Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares.
(n.d.). https://web.stanford.edu/ boyd/vmls/

[2] Class Notes and slides.

20

